
The asymptotic form of the N soliton solution of the Korteweg-de Vries equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1972 J. Phys. A: Gen. Phys. 5 L132

(http://iopscience.iop.org/0022-3689/5/12/002)

Download details:

IP Address: 171.66.16.72

The article was downloaded on 02/06/2010 at 04:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0022-3689/5/12
http://iopscience.iop.org/0022-3689
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Oen. Phys., Vol. 5, December 1972. Printed in Great Britain. @ 1972 

LETTER TO THE EDITOR 

The asymptotic form of the N soliton solution of the 
Korteweg-de Vries equation 

J D GIBBON and J C EILBECK 
Department of Mathematics, UMIST, PO Box 88, Manchester, M60 lQD, UK 

MS received 6 November 1972 

Abstract. The asymptotic form of Hirota’s N soliton solution of the Korteweg-de 
Vries equation is derived. The phase shifts of the N solitons caused by a general 
collision are found to be linear sums of two soliton terms. 

The Korteweg-de Vries (KV) equation 

+ ~ U U ,  + U,,, = 0 (1) 
was introduced by Korteweg and de Vries (1895) in their approximate theory of water 
waves. Their equation has also been used in plasma physics (Washimi and Taniuti 
1966) and in the study of anharmonic lattices (Zabusky 1967). Zabusky and Kruskal 
(1965) used numerical studies of the KV equation to show that general solutions of the 
equation evolved into a series of solitary wave solutions of the type 

U = +Pa sech2(+Px-+P3t+S). (2) 

These solitary waves, which were named solitons, had the remarkable property that 
they passed through each other without breaking up, but with an overall change in the 
phase shift S. These solutions were studied further by Gardner et a1 (1967), Miura 
(1968), Miura et a1 (1968), Lax (1968), Su and Gardner (1969), Gardner (1971), Shih 
(1971) and Benjamin (1972). Recently Hirota (1971) has given a remarkable exact 
analytic solution for the collision of N solitons. In this letter we clarify the nature of 
Hirota’s solution by examining its asymptotic form. 

Hirota’s solution to (1) is as follows: 

aa 

ax2 
u(x, t) = 2- lnf(x, t )  (3) 

f ( x ,  t) = detlMI. (4) 

The elements of the N x  N matrix it4 are given by 

f {  = Pp-P:t+p. (6) 

The Pi and 4: are arbitrary constants which determine the amplitude and phase, 
respectively, of the ith soliton. The P, are assumed to be all different. 

L132 
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We first consider the asymptotic form of ( 3 x 6 )  as t -+ -T, where T is large 
enough for all the solitons to be well separated. We need the diagonal expansion for f 
(Hirota 1971, Rubinstein 1970) 

N 

f = 1 + 2 2 a(il, i2, i3, . . ., in) exp(tl, +k,+ . . . 

a(i l ,  i2, . . ., in) = n a ( i k ,  il) 

(7) 
n = l N C .  

where 
(n) 

k e l  
(8) 

Without loss of generality we assume the N solitons are ordered such that 
P12 > Pa2 > . . . > PN2. For simplicity we assume all the Pf are positive. As t --t -T  
we examine the solution for values of x such that 5, B 0; E l ,  ea, , . . In-1 -+ -O(T) 
and (n+l, . . ., EN --+ +O(T). The next step is to factorize (7) in the form 

f, = A exp(El+t2+ . . . +E,)+ . . . +Bexp(l,,)+C+ . . . +exp(-E,+,- . . . -IN). 
(1 1) 

The coefficients A, B, C and others in this expansion depend on the P ,  only. If we 
insert (10) into (3) the exponential term exp(t,+,+ . . . +EN) will not contribute since 
the er are linear functions of x .  In the limit t + -Tall the terms in (11) are negligible 
except for two terms: 

fn = B exp(tn) + C. 
We define 

From (7)-(9) it is easy to show that 
Yn- = 4 ln(B/C)* 

with the a,, as defined in (9). We can now write f, as 

U, = +Pn2 sech2(8,+y,-) (16) 
where On = 86,. This is the nth soliton before collision. Since all the solitons are 
well separated at t = -T, by assumption, the full amplitude will be sitnply a linear 
sum of solitons 
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In a similar manner we can calculate the asymptotic form as t --f + T :  

N 

u = 2 $Pn2 sech2(0,+yn+) 
n = l  

where 
n-1  

Y n +  = 3 2 ln(atn)* 
1=1 

The total phase change of the nth soliton during collision is 

n - 1  .v 
Y,+ -yn-  = 4 2 In(ain)-$ 2 ln(ain). 

i = l  i = n + l  

A physical interpretation is that if the ith soliton overtakes the nth soliton it contributes 
+ai, to the phase of the nth soliton: if the ith soliton is overtaken by the nth soliton it 
contributes -afn to the phase of the nth soliton. The remarkable feature of (20) is that 
it is a linear sum of two soliton terms even when three or more solitons collide simul- 
taneously. 

Recently an N soliton solution has been proposed (Gibbon and Eilbeck 1972) for 
an equation with many properties in common with the KV equation, the sine-Gordon 
equation (Barone et al 1971). It is interesting to note that this N soliton solution has a 
similar linear sum of two soliton terms in the phases of the solitons in the asymptotic 
limits. The two-soliton phase shift in the sine-Gordon solution is exactly twice that in 
Hirota’s KV solution. 

In view of the connection between the sine-Gordon equation and the equations 
of nonlinear optics (Lamb 1971), it is natural to ask whether there exists a KV analogue 
of the so-called O n  pulse of nonlinear optics. The O n  pulse is formed from the two- 
soliton sine-Gordon solution by taking the two-soliton amplitudes to be an anti- 
hermitian pair of complex numbers. Unfortunately in the KV case this choice gives a 
complex rather than a real pulse. Taking an hermitian pair in the KV case gives a real 
pulse, but this pulse is unbounded in the (x, t )  plane and cannot be considered as a 
physical solution of the KV equation. 

We would like to thank Dr D M Griffe1 of the University of Bristol for stimulating 
our interest in the KV equation, and Dr P J Caudrey of UMIST for several useful 
conversations. One of us (JCE) would like to acknowledge the financial support of an 
SRC assistantship under the supervision of Dr R K Bullough. 
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